汽车传感器超强科普:一次性看懂各类传感器的
时间:2020-12-28 14:38:40 来源:未知 点击:次
先进驾驶辅助系统(Advanced Driver Assistant System),简称ADAS,是利用安装于车上的各式各样的传感器, 在第一时间收集车内外的环境数据, 进行静、动态物体的辨识、侦测与追踪等技术上的处理, 从而能够让驾驶者在最快的时间察觉可能发生的危险, 以引起注意和提高安全性的主动安全技术。
汽车传感器
汽车传感器装备的目的不同,可以分为提升单车信息化水平的传统微机电传感器(MEMS)和为无人驾驶提供支持的智能传感器两大类。MEMS 在汽车各系统控制过程中进行信息的反馈,实现自动控制,是汽车的“神经元”。而智能传感器则直接向外界收集信息,是无人驾驶车辆的“眼睛”。
1.汽车智能化的根基——传感器
传感器是汽车电子控制系统的信息来源,是车辆电子控制系统的基础关键部件。传感器通常由敏感元件、转换元件和转换电路组成,其中敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是将上述非电量转换成电参量,转换电路的作用是将转换元件输出的电信号经过处理转换成便于处理、显示、记录和控制的部分。从目前汽车传感器装备的目的不同,可以分为提升单车信息化水平的传统微机电传感器和为无人驾驶提供支持的智能传感器两大类。
传统传感器:各个系统控制过程依靠传感器,进行信息的反馈,实现自动控制工作,是汽车的“神经元”。汽车传统传感器依照功能可以分为压力传感器、位置传感器、温度传感器、加速度传感器、角速度传感器、流量传感器、气体浓度传感器和液位传感器等 8 类。汽车传感器主要应用于动力总成系统,车身控制系统以及底盘系统中。汽车传感器在这些系统中担负着信息的采集和传输功用,它采集的信息由电控单元进行处理后,形成向执行器发出的指令,完成电子控制。
智能传感器:智能传感器是无人驾驶车辆的“眼睛”。 ;汽车正在向一台安全联网的自动驾驶机器人快速演进,进行环境感知、规划决策,最终实现安全抵达目的地。目前应用于环境感知的主流传感器产品主要包括激光雷达、毫米波雷达、超声波雷达和摄像头等四类。
MEMS 传感器是在半导体制造技术基础上发展起来,采用微电子和微机械加工技术制造出来的新型传感器。MEMS 传感器广泛应用于电子车身稳定程序(ESP)、防抱死(ABS)、电控悬挂(ECS)、胎压监控(TPMS) 等系统。其中,压力传感器、加速计、陀螺仪与流量传感器是汽车中使用最多的 MEMS 传感器,占汽车 MEMS 系统的 99%。
▲MEMS 应用广泛
▲MEMS 传感器价值较为集中
MEMS 具有较为明显的优势,是未来构筑物联网感知层传感器的主要选择之一,其优势主要体现在:1)微型化、2)硅基加工工艺、3)批量生产、4)集成化。
1)微型化:MEMS 器件体积小,单个尺寸以毫米甚至微米作为计量单位,重量轻,耗能低。MEMS 更高的表面体积比(表面积比体积)可以提高表面传感器的敏感程度。
2)批量生产:以单个 5mm5mm 尺寸的 MEMS 传感器为例,用硅微加工工艺在一片 8英寸的硅片晶元上可同时切割出大约 1000 个 MEMS 芯片,批量生产可大大降低单个MEMS 的生产成本 。
3)集成化:一般来说,单颗 MEMS 往往在封装机械传感器的同时,还会集成 ASIC芯片,控制 MEMS 芯片以及转换模拟量为数字量输出。
▲MEMS 与 ASIC 芯片集成化封装
▲MEMS 可批量生产降低制造成本
国外大厂垄断 MEMS 传感器市场,市场集中度较高。根据 HIS Automotive 统计,2017年全球 MEMS 前三大供应商(博世、森萨塔、恩智浦)占据了 57%的市场份额,其中博世占据鳌头,2017 年市占率达到 33.62%,森萨塔市占率达到 12.34%,恩智浦市占率达到 11.91%。电装(8.94%)、亚德诺(8.51%)、松下(7.45%)、英飞凌(7.23%)等厂商也占有一定份额。
国外大厂产品线广、技术领先、客户众多、形成较高的进入门槛。MEMS 传感器的研发难度及其制造工艺的复杂性是形成行业壁垒的主要原因。Invensense、英飞凌等国外厂商拥有 2 到 3 条产品线,博世、电装、意法半导体等 MEMS 产品线超过 4 条。相比之下,小供应商很难在较短时间内实现大批量生产制造,因此排名靠前的大供应商市场份额相对稳定,市场集中度较高。
MEMS 传感器装配量和价值量与其装配车型价位成正比。目前平均每辆汽车包含 24个 MEMS 传感器,而在高档汽车中,大约会采用 25-40 个 MEMS 传感器。例如 BMW高端车型仅发动机就可以用到 20-40 个传感器,而入门级车型仅 5 个左右。常用 MEMS传感器后装单车价值在 2000-20000 元不等;合资车通常不低于 4000 元,而自主品牌仅 2000 元左右,高端车型约为 10000-20000 元。 预计到 2019 年 MEMS 传感器市场规模可达到 420.13 亿元;随着智能化和电动化的提升,2020 年和 2021 年市场规模可分别达到 446.21 亿元,472.27 亿元,2015-2021 年复合增速为 6.5%。
3.智能传感器:自动驾驶核心
毫米波雷达是指利用波长 1-10nm,频率 30GHZ-300GHZ 的毫米波,通过测量回波的时间差算出距离。毫米波雷达始用于军事领域,随着技术水平的提升,开始逐渐应用于汽车领域。
毫米波雷达的优势主要为以下 3 个方面:1)探测性能稳定、作用距离较长、环境适用性好。2)与超声波雷达相比,体积小、质量轻和空间分辨率高的特点。3)与光学传感器相比,毫米波雷达穿透雾、烟、灰尘的能力强,具有全天候全天时的特点。但也存在着成本较高,对行人的识别较为困难等不足之处。
77 GHz 在性能和体积上都更具优势。目前车载雷达的频率主要分为 24GHZ 频段和77GHZ 频段。与 24GHz 毫米波雷达相比,77GHz 的距离分辨率更高,体积更是小了三分之一。2018 年,中国新车评价规程(C-NCAP)将自动紧急制动系统(AEBS)纳入评分体系,从而将带动 77GHz 毫米波雷达在未来的市场需求。而从长远来看,77GHz毫米波雷达的体积更小、探距更长,使得其较 24GHz 毫米波雷达将具备更大的市场空间。
24GHz 与 77GHz 毫米波雷达兼备于 ADAS 的长短距检测。毫米波雷达因其硬件体积小,且不受恶劣天气影响,被广泛应用在 ADAS 系统之中。24GHz 目前大量应用于汽车的盲点监测、变道辅助。雷达安装在车辆的后保险杠内,用于监测车辆后方两侧的车道是否有车、可否进行变道。77GHz 雷达在探测精度与距离上优于 24GHz 雷达,主要用来装配在车辆的前保险杠上,探测与前车的距离以及前车的速度,实现的主要是紧急制动、自动跟车等主动安全领域的功能。完全实现 ADAS 各项功能一般需要“1长+4 中短”5 个毫米波雷达,奥迪 A8 搭载 5 个毫米波雷达(1LRR+4MRR),奔驰 S 级搭载 6 个毫米波雷(1LRR+6SRR)。目前 77GHz 的毫米波雷达系统单价在 1000元左右,24GHz 毫米波雷达单价在 500 元左右。
毫米波雷达关键技术被外商垄断,集中度较高。在全球毫米波雷达市场上,占主导地位的是德国、美国、日本等国家。目前毫米波雷达技术主要由大陆、博世、电装、奥托立夫、Denso、德尔福等传统零部巨头所垄断;其中,77GHz 毫米波雷达技术被垄断于博世、大陆、德尔福、电装、TRW、富士通天、Hitachi 等公司手中。2016年,博世和大陆全球毫米波雷达市场占有率均为 17%,并列第一;电装、海拉并列第二,市场份额为 11%,采埃孚占据 8%,德尔福占据 6%,奥托立夫占据 4%。前七大供应商巨头市场占有率达到 73%。
国内毫米波雷达依赖进口,受限国外技术封锁,24GHz 毫米波雷达是主流方向。目前中国市场中高端汽车装配的毫米波雷达传感器全部都依赖国外进口,市场被美、日、德企业垄断,价格昂贵,并采取了技术封锁,自主可控迫在眉睫。国内自主车载毫米波雷达产品总体仍处于研制阶段。考虑到研发成本和 77GHz 开发技术受限,目前国内厂商对于毫米波雷达的研发方向集中于 24GHz。国内市场上,24GHz 毫米波雷达的产品体系已经相对成熟,供应链已经相对稳定,24GHz 的核心芯片能从英飞凌、飞思卡尔等芯片供应商获得。据麦姆斯咨询研究表明,2016 年中国汽车预装毫米波雷达的数量达到 105 万个,其中 24GHz 雷达占比 63.8%,77GHz 雷达占比 36.2%。
根据测算,毫米波雷达 2019、2020 年以及 2025 年市场规模可以达到 4.7 亿元、36亿元、80 亿元。2017-2025 复合增长率达到 58%左右。
激光雷达是一种综合的光探测与测量系统,通过发射接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离。目前常见的有 8 线、16 线、32 线激光雷达。激光雷达线束越多,测量精度越高,安全性越高。激光雷达并不是新鲜事物,早已在航空航天、测绘等领域进行了应用。随着汽车智能化的发展,L3 级别自动驾驶中开始应用激光雷达,由于其高精度、实时 3D 环境建模的特点将成为 L3-L5 阶段中最为关键的传感器。
▲Velodyne HDL-64E 激光雷达 3D 呈像
激光雷达固态化是未来趋势,存在小型化、低成本优势。业内降低激光雷达成本主要有两个方式:1)取消机械旋转结构、采用固态化技术根本性降低激光雷达成本。固态激光雷达体积更小,方便集成,并且系统可靠性提升,因此激光雷达有向固态发展的趋势。2)降低激光雷达线数,组合使用多个低线数激光雷达。从机械旋转式过渡到混合固态再到纯固态激光雷达,随着量产规模的扩大、技术迭代更新,成本不断降低,激光雷达也在不断向小型化、低功耗、集成化发展。
激光雷达的核心技术主要掌握在 Velodyne、Ibeo、Quanergy 三家企业中。美国Velodyne 的机械式激光雷达起步较早,技术领先,最新已推出 128 线原型产品VLS-128,同时与谷歌、通用汽车、福特、Uber、百度等全球自动驾驶领军企业建立了合作关系,占据了车载激光雷达大部分的市场份额。
Google、百度、福特、奥迪、宝马等各企业相继采用激光雷达的感知解决方案。宝马声明联手激光雷达创企 Innoviz 研发无人驾驶汽车,预计 2021 年推出。根据个公司官网激光雷达产品价格,单车激光雷达传感器价值在 3~8 万美元之间。
短期内激光雷达不会大规模应用于汽车领域。尽管自动驾驶加速发展给激光雷达行业创造了较好的应用前景,但是激光雷达自身发展的诸多痛点却限制了其在自动驾驶汽车上的应用。限制因素主要有三个方面:1)成本高昂。激光雷达龙头 Velodyne16线产品 0.8 万美元,32 线产品 4 万美元,64 线产品约 8 万美元。
高昂的产品价格也抑制了激光雷达在自动驾驶车辆中的应用。2)难以量产、交货周期长。Velodyne64线产品生产周期要 4-8 周,32 线和 16 线也要 2-4 周,为了保证激光雷达传递接受信号的精准性,其复杂的组装和调校过程拉大了其交货周期。3)缺乏相关车规。目前自动驾驶只是一个前瞻性的概念,具体还没有实践,没有相应的政策法规的强制性要求,这在一定程度上也限制了激光雷达在自动驾驶领域的普及。
超声波雷达的工作原理是通过超声波发射装置向外发出超声波,到通过接收器接收到发送过来超声波时的时间差来测算距离。超声波雷达在自动驾驶中,其基础应用为泊车辅助预警以及汽车盲区碰撞预警功能。超声波雷达成本低,短距离测量中具有优势,探测范围在 0.1-3 米之间,而且精度较高,因此非常适合应用于泊车。但测量距离有限,且很容易受到恶劣天气的影响。
自动泊车普及激发超声波雷达需求。超声波雷达一般安装在汽车的保险杠或者侧面,前者称为 UPA,一般用于测量汽车前后障碍物,后者称为 APA,用于测量侧方障碍物。APA 超声波传感器是自动泊车辅助系统的核心部件,探测距离较远,可用作探测车位宽度,获得车位尺寸及车辆的位置信息。超声波雷达主要应用于倒车雷达,以及自动泊车系统中近距离障碍监测。倒车雷达已经由高端车型下沉到中低端车型,渗透率较高,前装率达 80%左右。倒车雷达系统通常需要 4 个 UPA 超声波雷达,自动泊车雷达系统需要 6-12 个超声波雷达,典型配置是 8 个 UPA+4 个 APA。
超声波雷达技术方案各有优劣,模拟式雷达占据主要市场。超声波雷达的技术方案,一般有模拟式、四线式数位、二线式数位、三线式主动数位四种,其在信号干扰的处理效果上依次提升。四种技术方案在技术难度、装配以及价格上各有优劣。目前市场上使用较多的是“模拟式”技术路线,其优点为产品成本低,但易受外界环境干扰。未来智能化趋势下,“数位式”技术路线会更受欢迎。“数位式”技术路线下,信号数字化,可以极大程度地提高雷达的抗干扰能力,但成本较高,技术难度大,现阶段的工艺水平只能多数采取四线式做法。
超声波雷达市场主要由博世(BOSCH)、日本村田(Murata)、日本尼赛拉(Nicera)等占据,国内奥迪威和同致电子具有较高的竞争力。奥迪威是国内领先的超声波传感器生产商,2016 年奥迪威车载超声波传感器的销量为 2627 万个,全球车载超声波传感器的市场容量约 27400 万个,奥迪威的车载超声波传感器占全球乘用车市场份额的 9%。奥迪威的第一大客户是台湾同致电子。台湾同致电子其核心产品为倒车雷达,2016 年其市场份额位居亚洲第一。
超声波中短期市场有望继续提升,长期可能会受到其他雷达传感器的替代压力。目前,后向的超声波雷达搭载率最高,达到 45.2%,“前向+后向雷达”搭载率为 28.3%,不搭载占比 26.5%。随着自动化驾驶的发展,“前向+后向”雷达有望成为搭载标配。因此,预计中短期内,超声波雷达市场渗透率将继续提升,但长期来看,未来搭载高级别自动驾驶车型中,部分或者全部的超声波雷达会被综合性能更好的毫米波雷达、激光雷达等替代。
根据测算,2019、2020 年、2025 年超声波雷达的市场规模分别将达到 42亿元,87 亿元,192 亿元。2016-2025 年复合增长率达到 38%左右。
总的来说,ADAS 采用的传感器主要有摄像头、雷达、激光和超声波等,可以探测光、热、压力或其它用于监测汽车状态的变量, 通常位于车辆的前后保险杠、侧视镜、驾驶杆内部或者挡风玻璃上。ADAS内每一类子系统在运作时,都离不开信息的搜集、处理与判断,以及判断完毕后系统给予车体指令,使汽车进行不同动作等各阶段。在这样的流程中,雷达和摄影机等传感器,以及MCU或影像处理IC等处理器,就成了最主要的使用元件。在通往L5级别自动驾驶的道路上,ADAS系统的成熟与完善是基本保障。